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Hydrodynamic Classification
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Hayes, 1979



Channel Area - Tidal Prism
Relationship

€ O'Brien (1931) related the

cross-sectional area, AC (below mean tide level)

to the tidal prism, P (during spring tide)




Some Tidal Prism vs Minimum Inlet
Flow Area Relationships
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Table 1. Tidal Prism-Minimum Channel Cross-sectional Area Relationships

Metric Units American Customary Units
Atlantic Coast A = 3.039x 10° P"® A = 7.75x10°P'®
Gulf Coast A = 9.311 x 10* P A = 5.02x 10* P%
Pacific Coast A, = 2.833x 10" P A= 1.19x 10* P>
Dual-Jettied Inlets A = 7489 x 10" P*® A = 3.76 x 10* P*®
(O'Brien)

A 1s the minimum cross-sectional area in square meters (square feet), P is the tidal
prism in cubic meters (cubic feet).

Derived from Jarrett 1976




Tidal Prism Vs Channel Area
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Tools for Inlet Engineering
Inlet Processes

Objectives

*1)Determine inlet hydrodynamics
*bay tide amplitude and phase
¢inlet velocity

+2) Examine inlet stability
+Combine inlet hydrodynamics and the
tidal prism vs minimum inlet cross-
sectional area relationship



& Tidal amplitude in bay (1/2 tide range)

€ Bay tide high water time relative to ocean
high water tide - phase lag

@ Velocity in inlet

@ Tidal prism
€ Bay tide range x bay area
€ Integrate discharge-time curve
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Some Assumptions for Simplified A&
Inlet Hydrodynamics J_—

€ Bay walls are vertical

€ No inflow from streams

€ No density currents

€ Ocean tide sinusoidal

€ Bay water level rises uniformly

@ Inlet channel flow area constant

@ Inertia of water mass in channel ignored
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1-D Approach

treat as an orifice over a given
channel length, assuming
velocities fall off significantly
as one moves away from the
entrance.



The Inlet System

Absecon Inlet’

New Jersey Coast, 1973 thigantiné: Inlet




1-D Equations
for Inlet Hydrodynamics

€ 1-D equation of motion (11-6-2)
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Integrating over the length of the inlet, and using equation
of continuity
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Contributions to Head Loss
Across Inlet Length




Keulegan K

Keulegan developed solution for velocity and bay tide

containing dimensionless parameter K called
coefficient of repletion (or filling)

K — TAavg
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Input Variables in Simple Inlet
Modeling

® 2o, tide amplitude (half tide range)

@ T, tide period (seiche period may be used if important
in forcing).

® A, surface area of bay or lagoon influenced by the
inlet.

® A, average area of channel



Input Variables in Simple Inlet
Modeling

@ L, channel length : Estimate based on distance
between a region where current speed would be
expected to significantly decrease at seaward and
bayward ends of channel.

€ R, channel hydraulic radius (usually average depth
across channel, since inlets are relatively wide and
shallow).



Input Variables in Simple Inlet
Modeling

+ Friction Coefficients
* K., entrance loss

¢ 0.05 value up to 0.25 for dual jetties

o EXit loss

+ 1.00 value describes a relatively deep bay and complete loss of kinetic
head

+ Smaller values (less than 1.0) may be tried during calibration

+ f, Darcy-Weisbach coefficient
¢ (.03 a common value or calculate from f=0.088/R"3(English units, n=0.0275)

+ K



Calculating K, Determine Bay Tide
Amplitude and Phase
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Bay Tide, Channel Velocities for
K=1.1 Value
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Bay Tide, Channel Velocities for /%
K=0.2 Value '
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Ocean Tide & Bay Tide, ft, Velocity, ft/sec

Example Output of
Hydrodynamic Analysis

01 2 3 4567 8 91M011121314151617181920
Time, hr

- (Jcean Tide == Bay Tide -2 Velocity
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