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ABSTRACT

The concept of uniform flow is traditionally associated with a cross-section-integrated description of

channel flow. In some analyses of flow in wide channels, it may be appropriate to adopt a

depth-integrated description. The ensuing lateral structure of the depth-integrated flow is

investigated at uniform flow. The steady state ordinary differential equation for the lateral structure

is established, along with the formulation as a boundary value problem. An integral part of the

formulation is the relationship between the channel resistance models for cross-section-integrated

and depth-integrated descriptions, respectively. Predictions are shown for a rectangular channel and

for an irregular channel.
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INTRODUCTION

Uniform flow in a channel is a flow state that is rarely

experienced but it is nonetheless influential in character-

izing channel flows. In particular, it has a fundamental

role in characterizing channel friction. The familiar chan-

nel resistance closure models, Chèzy, Darcy–Weisbach

and Manning, are uniform flow formulae. In steady

gradually varied flow, uniform flow is the asymptotic state.

In unsteady flow, steady gradually varied flow is the local

time-averaged flow.

The traditional analysis of uniform flow is based on a

cross-section-integrated description of channel flow. The

flow is characterized by the cross-section-integrated flow

Q and the water surface elevation h. Channel resistance

is characterized by a constant cross-section-averaged

friction factor, C, f or n, depending on the closure

model. At uniform flow, Q, the flow cross-section A

and the water surface slope ∂h/∂x are all constant.

There is no prediction of flow structure within the cross

section.

A depth-integrated description of channel flow pro-

vides some flow structure. The flow is characterized by

depth-integrated flows qx in the longitudinal direction and

qy in the lateral direction, together with the water surface

elevation h. The conservation equations must now include

mass and momentum fluxes in both the longitudinal and

lateral directions. The vector momentum equations must

also include lateral momentum transfer, without which

there would be slip at lateral boundaries and no lateral

boundary layer structure. Channel resistance is here

characterized by a bottom friction factor (C or f or n) to

represent shear in the vertical and an eddy viscosity e to

represent shear in the horizontal. Together, the bottom

friction factor and the horizontal eddy viscosity assume

the role of the cross-section-averaged friction factor in the

cross-section-integrated description.

A depth-integrated description provides the oppor-

tunity to predict the lateral flow structure at uniform flow.

As context, this paper will initially review the traditional

cross-section-integrated prediction of uniform flow con-

ditions in a natural channel. It will then consider the

definition of uniform flow conditions with a depth-

integrated description of channel flow. An ordinary differ-

ential equation is established to describe the lateral flow

structure qx(y) at uniform flow. The associated boundary

value problem is formulated, and solved numerically. An

integral part of the analysis is the relationship between the

cross-section-integrated friction factor and the combi-

nation of bottom friction factor and horizontal eddy
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viscosity. Illustrative predictions are provided for a

rectangular and a natural channel.

CROSS-SECTION-INTEGRATED DESCRIPTION

Most analyses of nearly horizontal flow in natural

channels adopt a cross-section-integrated description

(see Figure 1). The independent variables are longitudinal

position x and time t, the dependent variables are h(x,t)

the local water surface elevation to a fixed horizontal

datum and Q(x,t) the local discharge or cross-section-

integrated flow.

The cross-section-integrated conservation equations

are
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in which A(x,t) is the local flow cross section, P(x,t) is the

local wetted perimeter,
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zb(x,y) is the local bed elevation, b(x,t) is the local surface

width, g is the gravitational acceleration and t0(x,t) is the

boundary shear. The quadratic Darcy–Weisbach friction

model is adopted, with
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in which f is the Darcy–Weisbach friction factor. The

alternative Chèzy or Manning models can be substituted

without any fundamental change in the analysis. These

details are given subsequently.

The special case of steady flow has received consider-

able attention in open channel flow. Omitting the time-

dependent terms, the long wave equations reduce to the

gradually varied flow equations:
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which describe the steady-state flow on which flood and

tidal flows are imposed (Henderson 1966). For uniform

flow, dA/dx is zero, so that dh/dx ( = dzb/dx = − S0), A

and P are also constant, and

0�gAS0�
f
8

Q2

A2 P. (5)

For a flat-bottom channel (rectangular, trapezoidal, etc), a

uniform (h − zb)n = dn depth (the normal depth) can be

established by solution of implicit algebraic Equation (5).

But note that this requires the additional assumption that

the lateral water surface profile is horizontal.

For a natural channel, the depth varies across the

channel and the concept of a normal depth is not

especially satisfactory. But the concept of uniform flow

remains appropriate. It would be more useful to

Figure 1 | Definition sketch for narrow channel.
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characterize uniform flow by the cross-section area at

uniform flow, the normal area An. An might be estimated

implicitly from Equation (5). But again there is the

additional assumption that the lateral water surface pro-

file is horizontal in the identification of the local elevation

of the water surface and also in the identification of the

lateral locations of both the left and right banks.

The lateral structure of the water surface and the

lateral location of the left and right banks are issues that

are directly addressed in the following consideration of a

depth-integrated description of uniform flow. The cross-

section-integrated description precludes any prediction of

the lateral (cross-stream) structure of h, Q and dn or An.

DEPTH-INTEGRATED DESCRIPTION

The lateral flow structure of nearly horizontal flow in

natural channels is retained by including the lateral pos-

ition y along with the longitudinal position x and time t

as the independent variables. The dependent variables

become water surface elevation h(x,y,t) and the depth-

integrated flows

qx�x, y, t��*
�h

h

uxdz, qy�x, y, t��*
�h

h

uydz (6)

in which the bed elevation is at zb = − h(x,y) in common

practice, and (ux,uy) are the local velocity components.

The depth-integrated mass and momentum conservation

are
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from which both Coriolis accelerations and surface wind

stresses have been omitted. The friction model becomes

t0a�
f�
8

r
zqzqa

�h�h�2 , a�x,y (10)

locally, in which the Darcy–Weisbach friction factor f ′ for

this depth-integrated description is consistent (but not

identical; see Equation (17)) with the f for the cross-

section-integrated model (Equation (3)).

Lateral momentum transfer has been modelled as

∂
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by analogy with the general form of Newton’s law of

viscosity; tab and ru9
au9

b are the local viscous and

Reynolds stresses in the horizontal plane and e is the

horizontal eddy viscosity. In the cross-section-integrated

description, both vertical and horizontal momentum

transfer are scaled by a constant f. In the depth-integrated

description, vertical momentum transfer is scaled by f9 and

horizontal momentum transfer is scaled by e. Consistent

with the practice in cross-section-integrated descriptions,

both f9 and e are assumed constant in the depth-integrated

description.

The integral parameter Q is

Q�*
A

qxdy (12)

where A was defined in Equation (2), except for the

sign change convention in the representation of the bed

elevation.

A definition of uniform flow for depth-integrated

descriptions of channel flow that is consistent with

Equation (5) for a cross-section-integrated description

would have

(i) steady flow,
∂h
∂t

�
∂qx

∂t
e�

∂qy

∂t
�0
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(ii) no longitudinal variation in flow,
∂qx

∂x
�

∂qy

∂x
�0, and

(iii) constant channel resistance parameters f9 and e.

Equation (7) together with no flow boundary bound-

ary conditions at the channel sides gives qy[0. Equation

(9) gives ∂h/∂y = 0, so that h = h(x), a function of x only.

The residual terms in Equation (8) become
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2
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in which both dn = (h + h) and qx are functions of y. Given

dn(y), Equation (14) is a second-order ordinary differential

equation for the lateral velocity profile qx(y). It is in the

familiar form of a boundary layer equation, requiring no

slip at the banks and describing the lateral diffusion of

boundary shear from the banks.

Suitable boundary conditions on Equation (14) are no

flow at yL, the left hand channel bank and at yR, the right

hand channel bank:

qx(yL) = 0 qx(yR) = 0 (15)

together with the integral condition

Q�*
yL

yR

qx�y�dy (16)

that identifies the cross-section-integrated discharge Q. Q

is a given parameter.

The relationship between the cross-section-integrated

friction factor f, the depth-integrated friction factor f9

and the horizontal eddy viscosity e is established from

Equations (5) and (14). Integrating (14) over the cross

section and comparing terms gives
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8
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dqx
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The place of f9 and e in the depth-integrated description is

taken by f alone in the cross-section-integrated descrip-

tion. Equation (17) is, in fact, two equations, relating the

constant water surface slope to cross-section-integrated

and to depth-integrated descriptions of the channel

resistance, respectively.

NUMERICAL ALGORITHM

Stage 1

For a natural channel, the depth varies across the channel,

but the water surface elevation remains horizontal across

the channel. The flow cross section at uniform flow can be

characterized by the elevation Dh of the water surface (or

equivalently by the flow cross section). Equation (17a) (or

(5)) becomes the implicit algebraic equation

f�Dh��gAS0�
f
8

Q2

A2P (18)

with A and P defined as in Equation (2) but with zb = − h.

A number of numerical algorithms (bisection, Newton–

Raphson, secant method, etc) are suitable for implicit

algebraic equations in a single unknown.

Numerical precision that is consistent with the bal-

ance of the subsequent discussion of depth-integrated flow

is achieved by computing A and P from the ordinary

differential equations

dY1

dy
�h�Dh

dY2

dy
�Œ1�Sdh

dyD
2

(19)

in which dY1/dy is dA/dy and dY2/dy is dP/dy. Both h

and dh/dy are required as continuous functions of y.

Bathymetry specified as discrete (yi,hi) pairs is anticipated,
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with cubic spline interpolation providing smooth and

continuous estimates for h and dh/dy as required.

Bathymetric resolution must be adequate to follow the

significant detail of the cross section. Inadequate resolu-

tion will not be improved by the spline interpolation.

Initial conditions are Y1 = Y2 = 0 at y = yL. Integration

from yL to yR gives A = Y1(yR) and P = Y2(yR). Excellent

precision is achieved with an error-correcting, adaptive

step size (mixed fourth- and fifth-order Runge–Kutta)

code for numerical integration.

Estimation of yL and yR is formulated as the implicit

algebraic equation

fL,R(y) = 0 = h(y) + Dh. (20)

Given Dh and the bathymetry h(y), there are two solutions

to Equation (20), respectively yL at the left bank and yR at

the right bank. Equations (20) may be solved by the same

numerical algorithm adopted for Equation (18).

This Stage 1 algorithm requires knowledge of the

channel geometry, together with the assigned Q, S0 and f.

A successful numerical solution provides Dh, yL, yR, A

and P.

Stage 2

The lateral boundary layer Equation (14) is equivalent to

the simultaneous first-order ODE system:

dZ1
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�
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e
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8

Z1
2

dn
2 (21)

where Z1 is qx and Z2 is edqx/dy. But numerical integration

of Equations (21) requires initial conditions at a known y

on both Z1 and Z2. Z1(yL) = 0, but Z2(yL) = z is unknown.

The second boundary condition is Z1(yR) = 0. Locally,

dn(y) = h(y) + Dh, in which Dh is known from Stage 1.

The problem is formulated as the simultaneous

implicit algebraic equations
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This system is nonlinear through Equation (21b), which is

involved in the definition of Equation (22b, c). Evaluation

of Z1(yR) and Z2(yR) requires numerical integration of

Equations (21) with initial conditions Z1 = 0 and Z2 = z at

yL; z is an unknown. As the integrals in Equations (22b, c)

must also be evaluated numerically, consistent numerics is

assured by redefining the ODE system as

dZ1

dy
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y
qx

2

�h�Dh�2 dy (24)

with initial conditions Z1 = 0, Z2 = z, Z3 = − Q and Z4 = 0

at yL. The simultaneous implicit algebraic equations

become

f1�z,e,f���0�Z1�yR�

f2�z,e,f���0�Z3�yR�

f1�z,e,f���0�gAS0��Z2�yR��z��
f�
8

Z4�yR�. (25)

Newton’s method (Press et al. 1992) is a suitable choice

for the numerical solution of Equations (25), with a

error-correcting adaptive step size Runge–Kutta code as
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before for the numerical integration of Equations (23). An

error-correcting adaptive step size ODE code ensures

adequate precision in evaluations of Equations (25). As

the evaluation of the implicit Equations (25) involves

the numerical integration of the ordinary differential

equations (23), numerical precision in the evaluation of

Equations (25) becomes a potentially significant issue. The

use of IEEE standard double (64 bit) precision is import-

ant; this is now implicit in many engineering software

platforms.

It is also recognized that the definition of Z2 to Z4 in

Equations (23) makes it very likely that Z1 to Z4 will be

very different in magnitude, as they also are in dimensions.

Possible numerical precision consequences have been

avoided by non-dimensionalizing all variables by a space

scale that approximates the width W of the channel, and a

timescale W/U, where U approximates the mean flow

velocity in the channel.

CHANNEL FRICTION

The bottom friction factors f and f9 and the horizontal

eddy viscosity e are independent parameters in the

numerical algorithm. Their physical relationship is

established through Equation (17).

The cross-section-integrated friction factor f is a given

parameter. The expected magnitude of the depth-

integrated friction factor f9 would be of the order of f but

rather smaller in magnitude, as resistance in the depth-

integrated description is contributed by both f9 and e.

A simple order-of-magnitude estimate for the hori-

zontal eddy viscosity is provided by a zero equation

turbulence model, in which

e'u*l (26)

where u* is the velocity scale of the turbulence and l is the

length scale of the turbulence.

The velocity scale of the turbulence is the shear

velocity u* = '(tb/r). From the cross-section-integrated

Darcy–Weisbach friction model, the boundary shear is

tb = (f/8)rU2, where the cross-section-averaged flow

velocity U is Q/(Wd). W is the channel width and d is the

mean channel depth.

The length scale of the turbulence would be the large

eddy scale, for which the mean channel depth d is a good

estimate.

Using these estimates for the velocity and length

scales of the turbulence, an order-of-magnitude estimate

for the horizontal eddy viscosity is

e'S f
8D

1/2Q
W

. (27)

This is a suitable initial estimate for e in Equations (25).

APPLICATION

As an initial example, consider a rectangular channel

(Figure 2(a)) of width 100 m and local bed at elevation

− 5 m. The markers in Figure 2(a) show the discrete (yi,hi)

bathymetry pairs that communicate the channel bathym-

etry. The bed slope S0 is 0.001, the friction factor f is 0.02

and the cross-section-integrated flow Q is 1000 m3/sec.

Figure 2 | Rectangular channel.
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From the Stage 1 algorithm, Dh = − 2.00 m, yL = 0 m,

yR = 100 m and A = 300.0 m2. From the Stage 2 algorithm,

e = 2.26 m2/sec and f9 = 0.0011. Figure 2(b) shows the

qx(y) profile. The profile is symmetric, as expected. The

near-bank gradients are significantly less steep than those

that would characterize a turbulent boundary layer

between parallel plates. But this is a lateral profile of a

depth-integrated flow, where the depth integration has

integrated over the boundary layer profile in the vertical.

The mean flow velocity gradients near the bed would

be quite sharp. Figure 2(c) shows the equivalent lateral

profile of qx(y)/[h(y) + Dh], the depth-averaged velocity.

Figure 3(a) is a natural channel of roughly similar

width and cross-section area. The same S0, f and Q as for

the rectangular channel example are adopted.

From the Stage 1 algorithm, Dh = − 4.95 m,

yL = 45.65 m, yR = 96.79 m and A = 240.0 m2. From the

Stage 2 algorithm, e = 0.55 m2/sec and f9 = 0.0021. Figure

3(b) shows the qx(y) profile, and Figure 3(c) the qx(y)/

[h(y) + Dh] profile. As a direct consequence of the irregu-

lar bathymetry, the lateral flow profile is asymmetric.

A further application of such structured uniform flow

solutions would be in the prediction of the longitudinal

dispersion coefficient for contaminant transport in the

same channel. The Taylor–Elder–Fischer theory (Fischer

et al. 1979) requires knowledge of the lateral distribution

of the depth-integrated flow together with the horizontal

coefficient of turbulent momentum diffusion. This

information is provided by the present theory.

CHÈZY AND MANNING FRICTION MODELS

Chèzy model

The relationship between C and f is direct:

f�
8g
e2 or e�Œ8g

f
. (28)

As f is dimensionless, the simplest approach would be to

retain the previous algorithm, with a prior translation

from C to f and a subsequent translation from f9 to C9.

Manning model

The changes are more fundamental for the Manning

model. The cross-section-integrated n would be specified

in place of f and a depth-integrated n9 predicted in place of

f9. SI units are assumed in the following discussion. For

FSS (foot–second–slug) units, n and n9 are replaced by

n/1.49 and n9/1.49, respectively.

Equation (14) becomes

e
d2qx

dy2 �gdnS0�gn�2 qx
2

dn
7/3�0 (29)

and Equation (17) becomes

�gAS0��gn2 Q2

A7/3P
4/3�e

dqx

dy�yL

yR

�gn�2*
yL

yR qx
2

�h�h�7/3 dy. (30)

In Stage 1 of the algorithm, Equation (18) would become

f�Dh��gAS0�gn2 Q2

A7�3P
4�3. (31)

In Stage 2 of the algorithm, Equation (23) becomes

Figure 3 | Natural channel.
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dZ1

dy
�

Z2

e

dZ2

dy
�g�h�Dh�S0�gn�2 Z1

2

�h�Dh�7�3

dZ3

dy
�Z1

dZ4

dy
�

Z1
2

�h�Dh�7�3 (32)

and Equation (25) becomes

f1(z,e,n9) = 0 = Z1(yR)

f2(z,e,n9) = 0 = Z3(yR)

f3(z,e,n9) = 0 = gAS0 + (Z2(yR) − z) − gn92Z4(yR). (33)

The details are otherwise identical.

CONCLUSIONS

An analysis of the lateral structure at uniform flow in a

channel has been based on the depth-integrated long wave

equations. At uniform flow, it is shown that the cross-

stream depth-integrated flow qy is identically zero and that

the lateral profile of the water surface is horizontal.

The lateral distribution of the streamwise depth-

integrated flow qx is shown to follow a boundary-layer-

style equation, where the lateral structure responds to

shear diffusion from the channel sides.

Uniform flow is described by the channel discharge Q,

the bed slope S0 and the channel (cross-section-

integrated) friction factor f. Channel bathymetry is

specified as (yi,hi) observation pairs. A two-stage numeri-

cal algorithm is formulated to solve for the cross-section

area A, the left yL and right yR bank locations, the qx(y)

profile, the horizontal eddy viscosity e and the depth-

integrated bottom friction factor f9.

Application of the algorithm to a rectangular channel

and a natural channel are given. The predictions are

shown to be physically plausible.

Algorithm variations for alternative channel friction

models are given.

ACKNOWLEDGEMENTS

The research described and the results presented herein,

unless otherwise noted, were obtained from research

funded through the Scour Holes at Inlet Structures work

unit of the Coastal Inlets Research Program at the US

Army Engineer Research and Development Center,

Coastal and Hydraulics Laboratory (CHL). Permission

was granted by Headquarters, US Army Corps of

Engineers, to publish this information.

REFERENCES

Fischer, H. B., List, J. L., Brooks, N. H., Imberger, J. I. & Koh,
R. C. Y. 1979. Mixing in Inland and Coastal Waters. Academic,
New York.

Henderson, F. M. 1966. Open Channel Flow. MacMillan, New York.
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P.

1992. Numerical Recipes in FORTRAN: The Art of Scientific
Computing, 2nd edn. Cambridge University Press, Cambridge.

108 Rodney J. Sobey | Lateral structure of uniform flow Journal of Hydroinformatics | 06.2 | 2004


